Kinetics and Reaction Rate

Answer each question in the blank space!

) (Date:

Name:

1.		action Mechanisms and Rate-Determining Steps A reaction occurs in two steps, where Step 1 is slow and Step 2 is fast: Step 1: A+B->C (slow)
		Step 2: C+D->E (fast)
		Write the overall reaction equation and determine which step is the
		rate-determining step. Explain why this step limits the rate of the reaction.
	Ĭ	
	b)	Based on the reaction mechanism above, propose a rate law for the
	-,	reaction. Explain your reasoning, and describe any assumptions you make
		about the concentration of intermediate species.
2	Fff	ect of Temperature on Reaction Rate
		Explain how the temperature of a system influences the rate of a chemical
	u,	
		reaction, referencing the concept of collision theory.
	b)	A reaction has an activation energy of 80 kJ/mol and follows first-order
	-,	kinetics. If the rate constant doubles when the temperature is increased by
		10°C, calculate the new temperature. Assume that the initial temperature is 298 K.
		246 K.
3.	Co	mplex Rate Laws and Integrated Rate Laws
		Derive the integrated rate law for a first-order reaction and show how it can
	٠,	be used to determine the concentration of a reactant over time.
		be used to determine the concentration of a reactant over time.
	b)	A reaction follows zero-order kinetics with an initial concentration of 0.8 M and a rate constant of 0.02M/s. Calculate the time required for the concentration to drop to 0.2 M.