Name:

Date:

CHEMICAL EQUILIBRIUM REACTIONS

Calculate the equilibrium constant, K_c , for the following reactions. Use the given concentrations of reactants and products at equilibrium.

For the reaction:

$$A(g) + B(g) \rightleftharpoons C(g) + D(g)$$

At equilibrium, the concentrations are:

[A] =
$$0.25 \text{ M}$$
, [B] = 0.40 M , [C] = 0.15 M , [D] = 0.30 M

Calculate Kc!

Solution:

The equilibrium constant expression is: $K_c = \frac{[C][D]}{[A][B]}$

Substitute the values:

$$K_c = \frac{(0.15)(0.30)}{(0.25)(0.40)} = \frac{0.045}{0.10} = 0.45$$

For the reaction:

$$PC1_5(g) \rightleftharpoons PC1_5(g) + C1_2(g)$$

At equilibrium, the concentrations are:

$$[PC1_5] = 0.10 M$$
, $[PC1_3] = 0.30 M$, $[C1_2] = 0.20 M$

Calculate Kc!

Solution:

The equilibrium constant expression is: $K_c = \frac{[PC1_3][C1_2]}{[PC1_2]}$

Substitute the values:

$$K_c = \frac{(0.30)(0.20)}{(0.10)} = \frac{0.06}{0.10} = 0.460$$