Comprehensive Worksheet - Unit 3: Force

Worksheet: Gravity I

It will be necessary that you utilize the data from "Gravity Stats" for you calculations.

- Find the force of attraction between the Moon and the Earth.
- Find the force of attraction between the Sun and the Moon.
- If the Moon was positioned collinearly between the Sun and Earth, what would be the net force on the Moon? (Note:
- Given distances are from the center of mass, do not worry about a body's radius for this problem.)

 There are two masses initially 1.00 m apart. Mass 1 is 1.50 x 106 kg. Mass 2 is 1.00 x 106 kg. Create a data table and graph for the following situations:
 a) Force vs Mass
 Mass 2 increases from 1.00 x 10⁶ kg to 2.00 x 10⁶ kg, 3.00 x 10⁶ kg, 4.00 x 10⁶ kg, and 5.00 x 10⁶ kg.

b) Force vs distance

Distance increase from 1m to 2 m to 3 m to 4 m to 5 m apart.

- Using the Earth's radius and mass, find the acceleration due to gravity of a mass (m) at the Earth's surface. Remember,
- F_g =mg. Explain what part of your calculations in question # 5 demonstrates that all objects accelerate towards the earth with the same acceleration.

Gravity Stats

Gravitational Constant	G	6.67 x 10 ⁻¹¹ N m ² /kg ²
Mass of the Earth	Me	5.98 x 10 ²⁴ kg
Mass of the Moon	Mm	7.35 x 10 ²² kg
Mass of the Sun	Ms	1.99 x 10 ³⁰ kg
Radius of the Earth	Re	6.38 x 10 ⁶ m
Radius of the Moon	Rm	1.74 x 10 ⁶ m
Radius of the Sun	Rs	6.96 x 10 ⁸ m
Earth to Sun Distance		1.49 x 10 ¹¹ m
Earth to Moon Distance		3.84 x 10 ⁸ m
Sun to Moon Distance		1.50 x 10 ¹¹ m

Worksheet: Problems with Weight...

- A high school student has a mass of 60 kg. What will be the student's:
 - weight on Earth?
- b. weight on the moon, where the acceleration due to gravity is 1.62 m/s (~1/6 that of the earth's)?

 An object that weighs 10 Newtons on the earth's surface weighs only 9.98 Newtons on top of a very high mountain. What is the acceleration due to gravity atop this very high mountain?

 An astronaut weighs 750 Newtons on the earth. What is the astronaut's mass? 2.
- A newspaper reporter traveling on board a space ship weighs 82 Newtons in a region where the earth's gravitational force is 1.1 m/s². What is the mass of the newspaper reporter?
- How much does a person weigh on the earth if they weigh 60 Newtons at an altitude where the acceleration due to gravity is 1.2 m/s²?
- Joe has a weight of 850 N on Earth. What is his weight where g is 11.2 m/s^2 ? Susan has a weight of 350 N on Planet Z and a weight of 500 N on Earth. What is g on Planet Z?