Pre-AP PreCalculus Parent Functions

Notes Unit 1 Day 6

The Parent Function

$$f(x) = \frac{1}{x^2}$$

Type: This is a special type of rational function with constant in the numerator and a denominator of degree two. I have seen some text call this function the inverse square function, but not to be confused with the inverse of a function.

Numerical (Data)

Graph(Visual)

Unique Characteristics

Let the pivot point be the intersection of the asymptotes at (0,0)

Properties of the Parent Function

One to one: yes no

Domain: $(-\infty,0) \cup (0,+\infty)$

Range: $(0,+\infty)$

Increasing interval: $(-\infty, 0)$

<u>y-axis</u>

Justification: When $x_1 < x_2$, then $f(x_1) _ f(x_2)$ The slope of the tangent line is _

Decreasing Interval: $(0,+\infty)$

Justification: When $\mathbf{x}_{\!\scriptscriptstyle 1} < \mathbf{x}_{\!\scriptscriptstyle 2}$, then $\mathbf{f}(\mathbf{x}_{\!\scriptscriptstyle 1})$ $f(\mathbf{x}_2)$

Notice:

The slope of the tangent line is

Constant interval: DNE

Intercepts: DNE Symmetry: origin

y=x

Even Function Justification:

Odd Function Justification

Continuity: Continuous Discontinuous (Removable, Non-removable)

Extrema: No absolute (global) maximum or minimum values exist.

Asymptotes: Horizontal asymptote: y = 0

Vertical asymptote: x = 0

Concavity: Concave up interval:

Notice: On the given interval, the tangent lines to the graph are _____

Concave down interval: DNE

Point of Inflection: DNE

End behavior: Verbally:

As x approaches $-\infty$, f(x) approaches 0.

As x approaches $+\infty$, f(x) approaches 0.

Symbolically: $\lim_{x \to \infty} f(x) = \underline{\qquad} \lim_{x \to \infty} f(x) = \underline{\qquad}$.